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Abstract Skinner found that superstitious behaviour in pigeons results from acci-
dental operant conditioning. We use a simple cognitive model based upon reinforce-
ment learning to show that ritualisation of behaviour arises in analogous condi-
tions. This makes it possible to model the creation of ritual traditions using minimal
means in agent-based models, thereby opening a novel and potentially highly fruitful
approach to the study of this highly significant human behaviour.
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1 Introduction

Most research into ritualised behaviour tends towards high-level explanations that
involve, among other things, the cultural transmission of supernatural beliefs. The
explanation for the spontaneous appearance of superstitious behaviours in pigeons
provided by the behaviourist psychologist B.F. Skinner could not be any more dif-
ferent [9]. It sought to explain superstitious behaviour merely by reference to acci-
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dental operant conditioning. Understood as showing that superstitious behaviour
arises spontaneously where an agent—artificial or not—attempt to control an envi-
ronment that is unpredictable, this line of research has been expanded upon greatly
by researchers such as Ono, who showed the same effect in humans [8], as well as as
Killeen, who showed that pigeons placed in analogous conditions vary their rate of
superstitious behaviour in a way that maximises their pay-off given uncertainty [7].
Killeen’s observation has been generalised by Haselton and Buss, who showed that
human and other evolved cognitive mechanisms will be biased in favour of commit-
ting the least costly errors when operating under uncertainty, i.e., they will exhibit
error management [5]. Given the need to detect potential threats/opportunities in the
environment, people will avoid false negative errors at the cost of making more false
positive ones. This includes overdetecting causal connections and agency. Further
research has expanded the scope of this type of explanation even more by showing
that the kind of behaviour Skinner observed is a normal by-product even for formal
or computing mechanisms that attempt to predict system behaviour under conditions
that are often met with in natural settings [2, 4]. In effect, researchers working in the
Skinner tradition have shown that superstitious behaviour of all agents—be they arti-
ficial or natural—is to be explained as a by-product of the epistemic circumstances
encountered when attempting to control any unpredictable system.

The aim of the line of research pursued here is to see whether ritualised behaviour
can be explained in the same general terms, i.e., as the product of false positive
errors resulting from error management, and to explore how changes in conditions
affect spontaneous ritualisation in silico. Our ultimate goal is to create an agent-based
model, to be used to study the emergence of stable rituals at the group level. In other
words, we are seeking to show that rituals, including group rituals, are also to be ulti-
mately explained in terms of a fundamental phenomenon that affects all agents given
the right set of basic conditions—with most aspects of rituals as normally discussed
(including supernatural beliefs or the role of anxiety) being ancillary (see [10]).
The definition of ritualised behaviour used by us is drawn from Boyer and Lienard
[3] where they identify five basic characteristics common to ritualised behaviours.
Three are investigated here: redundancy—including elements in one’s behaviour
that are not necessary to achieve the apparent aim; goal-demotion—including ele-
ments in one’s behaviour that have no apparent effect; rigidity—performing all of
the elements, including the redundant and goal-demoted ones, in a strict order. The
modelled behaviour is studied with the use of the PathGame—a (pseudo)game with
clear and easily manipulable rules that makes operationalisation and analysis straight
forward.

2 The PathGame

PathGame is a novel methodology developed in order to empirically investigate the
conditions under which humans, as well as computational cognitive models, sponta-
neously ritualise their behaviour. Itis based upon Stuart Vyse’s earlier research [6, 12]
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Fig. 1 PathGame implemented as a web application using TypeScript

into superstitious behaviour. Vyse’s work was explicitly pursued in the Skinnerian
tradition described above, so expanding upon helps to make the connection between
superstitious and ritualised behaviours explicit. Getting humans and artificial agents
to deal with the same problem allows direct comparison of their behaviours.

The game takes place on a four-by-four matrix. The basic goal is to move the
avatar from the starting position in the top-left corner to the exit situated two blocks
down and two to the right. Five buttons are available: four directional ones and a
fifth, pressing which does not lead to any apparent effect. Players are allowed to
play the game fifty times, sometimes receiving points upon reaching the exit cell,
with the aim to get the maximum number of points. The interactive game’s interface
(implemented as a TypeScript web application for the purpose of human studies; not
presented here) is shown in Fig. 1. Redundancy is operationalised as pressing the up
or left buttons—pressing them is unnecessary to reach the exit. Goal-demotion is
operationalised as pressing the fifth *'mystery’ button—pressing it has no effect, apart
from being recorded. Rigidity is operationalised as repeating (within ten attempts)
the same non-minimal path, i.e., one that includes redundancy or goal-demotion.
Rigidity is distinguished from automaticity, which is operationalised as repeating
any minimal path within ten attempts, and which is understood to result in humans
from minimisation of cognitive effort rather than ritualisation.

When faced with Vyse’s simpler set-up (only the right and down buttons), human
players tended to correctly represent the game’s winning conditions when they were
predictable but generated complex and completely fictitious hypotheses when points
were awarded randomly. In our own pilot studies with human subjects, we found
that redundancy, goal-demotion and rigidity all increased when the probability of
obtaining points at each attempt was low, but automaticity grew as success was
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more likely. In effect, people appeared to be learning to form incorrect associations
between the ritualised aspects of their behaviour and obtaining points when points
were obtained randomly and rarely. As Vyse noted, “operant conditioning is not just
for rats and pigeons” [11].

3 The Cognitive Model (CM)

Inorder to provide an artificial model of spontaneous ritualisation using the PathGame
paradigm, a computational CM was implemented using the Anylogic environment
[1]. The goal was to determine whether spontaneous ritualisation of behaviour quali-
tatively akin to that exhibited by humans could be generated using a simple artificial
system designed to identify non-random patterns, thereby showing a common under-
lying basis for the phenomenon. The CM works on the basis of a set of weights on
each of the cells in the matrix, which determine the probability that the CM will
make a particular move when the avatar is in that cell. The avatar moves around the
matrix, with the each move determined stochastically on the basis of the weights at
the currently-occupied cell, until the exit cell is reached. Depending upon whether a
point was obtained at the end of the walk, the weights of the moves made are either
weakened or reinforced.

3.1 Terms and Parameters

A Move is regarded here as a movement to another valid cell or the Goal-Demotion
pseudo-activity. Moves are denoted as the four cardinal geographical directions on
amap: N, E, S, W, with Goal-Demotion denoted as the question mark: ? A Walk is
defined as a sequence of Moves leading from the starting position to the exit cell and
is represented symbolically as a Path, such as: SSEW?EE. A single Game consists
of a given number of Walks, which for the purpose of this research was always 50.
CM try to gain and store the knowledge about rewards along the Game.

The game matrix with initial and final move weights is presented in Fig. 2. A Move
weight is a floating-point number associated with the specific move at the specific
cell. The move weights are depicted in each cell (with the obvious exception of the
exit cell marked as a circle). The numbers indicate weights for each direction, with
the number in the center being the Goal-Demotion weight. The Move probability of
move X at a cell (i, j) can be obtained by dividing the corresponding weight tx;;
by the sum of all weights ) #,;;, where x € {N, E, S, W, ?}. Initial weights are set
to ensure the CM-controlled avatar is likely to reach the exit cell in a small number
of moves (just as is the case with human players). Reinforcement/attenuation during
the game changes these weights significantly leading to very different behaviour
depending upon the reinforcement schedule.
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Fig. 2 The game matrix with starting move weights (on the left), and the game matrix with final
move weights (on the right)
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Fig. 3 State diagram of CM (in Anylogic)

3.2 State Diagram
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The CM completes 50 walks. After each walk, Reinforcement Learning or Attenuate
Learning is performed according to a random or non-random schedule. The state
diagram of the CM implemented in Anylogic is presented in Fig. 3.

During the game the CM performs the following steps:

Step 1. Initialise move weights
Step 2. Make random weight-determined moves till end cell reached
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Step 3. Schedule determines whether to reinforce/attenuate the walk
Step 4A. Reinforcement learning

OR

Step 4B. Attenuate learning

Step 5. While less than 50 walks loop back to step 2.

3.3 Reinforcement Versus Attenuation

If a walk is rewarded, reinforcement occurs—the moves in the walk have their move
weights  increased as follows: tx;; — tx;j X Reinforce Ratio, where
Reinforce Ratio > 1. In effect, future walks are more likely to include the same
moves. Due to stochastic nature of the CM however, some degree of indeterminacy
is maintained, thereby allowing experimentation.

If a walk is not rewarded, attenuation occurs—the move weights contained in
the specific path are attenuated: tx;; — tx;; X Attenuate Ratio, where Attenuate
Ratio € (0; 1). In effect, in future future walks, the CM is less likely to perform the
same moves, as they were not beneficial.

In addition, to avoid the CM generating very long paths, path length mitigation
is introduced by making reinforcement/attenuation proportional to path length, with
the minimal path length of 4 being regarded as the base value.

4 Testing Methodology

Given that on the Skinnerian approach being pursued here, ritualised behaviour is
understood as arising due to accidental operant conditioning, it is important to test
the CM in two different kinds of scenarios—random and non-random. In the non-
random scenarios, the CM should be able to identify the winning paths while in the
random scenarios it should generate ritualised behaviour.

4.1 Non-random Scenarios

The non-random scenarios are based on a set of predefined, alternative rules that
reward specific CM behaviour. These rules are based on cells the path has to go
through or avoid or specific buttons being pressed or not pressed. To test the CM in
more complex non-random scenarios, some include pairs of these rules.

In these scenarios, a path increases the score by one and is reinforced if it satisfies
the rule in force in the game being played. Otherwise, the path is attenuated and the
score remains unchanged. Where a pair of rules is in force, both have to be satisfied
by a path for it to be reinforced and for the score to increase by one.
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Basic Rules

— Cell-Based Rules

R1. Avoid the bottom left quadrant
R2. Avoid the top right quadrant

R3. Walk through any 4th row cell
R4. Walk through any 4th column cell

— Button-Based Rules

RS5. Press the up arrow at least once

R6. Press the left arrow at least once

R7. Never press the goal-demotion button

R8. Press the goal-demotion button at least once
R9. Press the goal-demotion button at least twice.

Basic Rule Pairs

— R1 and R3: Avoid the bottom left quadrant and Walk through any 4th row cell

— R1 and RS: Avoid the bottom left quadrant and Press the up arrow at least once

— R1 and R7: Avoid the bottom left quadrant and Never press the goal-demotion
button

— R2 and R4: Avoid the top right quadrant and Walk through any 4th column cell

— R2 and Re6: Avoid the top right quadrant and Press the up arrow at least once

— R2 and R7: Avoid the top right quadrant and Never press the goal-demotion button

— R3 and R4: Walk through any 4th row cell and through any 4th column cell

— R3 and R6: Walk through any 4th row cell and Press the left arrow at least once

— R3 and R7: Walk through any 4th row cell and Never press the goal-demotion
button

— R4 and RS5: Walk through any 4th column cell and Press the up arrow at least once

— R4 and R7: Walk through any 4th column cell and Never press the goal-demotion
button

— RS and R7: Press the up arrow at least once and Never press the goal-demotion
button

— R6 and R7: Press the left arrow at least once and Never press the goal-demotion
button.

4.2 Random Scenarios

In these scenarios, reward and the associated reinforcement/attenuation schedule are
independent of the path used and depend merely upon the Reinforce Probability
parameter, which gives the stochastic probability of reward/reinforcement.
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5 Results

5.1 Results for Non-random Scenarios

The goal of these scenarios was to test whether and to what degree the CM was able
to extract rules knowledge from the received rewards and to then use that knowledge
to increase the number of points obtained over the length of the game. As such, the
scores obtained by the CM have to be compared to the scores obtained without any
reinforcement—these show how difficult the rules are to satisfy purely randomly and
differ between the different non-random rules tested.

The scores obtained by the CM for the basic rules and their pairs are presented
in Fig.4. These are the mean scores for 1000 games of 50 walks. Each game is
initialized in the same way (including the same initial move weights) and with the
following parameter values:

— Reinforce Ratio =9
— Attenuate Ratio = 0.8
— Path Size Mitigation applied linearly (see Sect. 3.3 for details).

The rules tested proved to vary greatly in terms of how easy they were to happen
upon randomly, with the rule pairs generally proving more difficult. This pattern
also held for cases where reinforcement was in place. However, in every case tested,
reinforcement allowed the CM to obtain a clearly increased average score. In fact, it
was with rule pairs that the effect of reinforcement was the most striking. Of course,
the difficulty of individual rules could be modified by altering the initial weights—
for example, pressing the goal-demotion button could be made much more likely,
thereby making R9 much more likely to be satisfied randomly. So, not much can
be read into individual rules. However, it is the overall pattern of reinforcement
increasing scores that shows that for the set of rules we tested, the reinforcement
learning was successful and that this CM is a satisfactory model of pattern-seeking
behaviour. Having observed this behaviour, we could go on to test how this CM
behaved when presented not with predictable scenarios but with purely stochastic
ones.

5.2 Results for Random Scenarios

Having established that the CM is capable of learning non-random rules, it was
necessary to check whether this was sufficient for the CM to generate ritualised
behaviour when presented with random scenarios, as operationalised in terms of
redundancy, goal-demotion and rigidity (see Sect. 2).

CM configuration is as follows:

— parameter Reinforcement Probability €< 0 : 0.01 : 1 > —101 values
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Fig. 4 CM mean scores for the individual rules and selected rule pairs, comparing reinforcement
with no reinforcement

— 1000 Games per each Reinforcement Probability value.

— Reinforce Ratio =9

— Attenuate Ratio = 0.8

— Path Size Mitigation applied linearly (see Sect. 3.3 for details).

A total of 101,000 Games were run. Each simulation consisted of 50 time steps
(i.e., 50 Walks or Paths). Rewards were awarded stochastically based on the value of
Reinforcement Probability and independently of the path used.

The metrics for the four characteristics obtained from the experiments are pre-
sented in Fig. 5.
Goal-Demotion—as shown in the upper left plot in Fig. 5—occurs in the majority
of paths when reinforcement is rare but drops away and is almost never seen in
cases where the probability of reinforcement is above 0.3. This is in line with human
behaviour, where it has been observed that goal-demotion also is much more common
when paths are rarely reinforced.
Redundancy—as shown in the upper right plot in Fig. 5—is very high at low Rein-
forcement Probability values—occurring in the majority of walks—but then drops
towards zero as the probability of reward increases, similarly to goal-demotion. This
pattern has also been observed in human players.
Automaticity—shown in the bottom left plot in Fig. 5—is not a necessary charac-
teristic of ritualised behaviour but was of interest to us given the methodology used.
It behaved in the opposite manner to goal-demotion and redundancy, in that it was



584 M. Rybnik et al.

GD Redundancy
o
-
(=
w | =
&
ey
Q4 g
8 g 8-
e o =1
§ 7 g
E =
= g 8
E
w -
o
wd -
T L T T T T T T T T
000 025 050 075 1.00 0.00 0325 050 075 1.00
Reinforcemant Probability Reinforcement Probability
Automaticity Rigidity
g L ®
z S i ]
S =
) / k=]
£ Vi =]
£ R4 / T
z / &
§ 2
-3 .,-'
E e f o~ -
.".’
o
/
(=B | —~ =
T T T T T T T T T T
0.00 025 050 075 1.00 000 0325 050 075 1.00
Reinforcement Probability Freinforcement Probability

Fig. 5 Average error management metrics versus Reinforcement Probability

almost non-existent when reinforcement was low and quickly came to dominate at
higher reinforcement probabilities. This pattern is also analogous to the one observed
with human players.

Rigidity—shown in the bottom right plot in Fig. 5—proved to be the problematic
measure. As can be seen, it is quite rare at high Reinforcement Probability values but
is completely absent when reinforcement drops to zero. As such it will be discussed
at some length in the final section. Rigidity is regarded here as the repetition of a
non-minimal path within the ten most recent walks. It is low with low Reinforcement
Probability values (bottom right plot in Fig. 5). Due to rare learning the paths tend to
be quite long and very stochastic, so they rarely repeat subsequently at all. Rigidity
rises quickly with the increase of Reinforcement Probability and stabilizes obtaining
about 6-7 occurrences out of 50 with Reinforcement Probability € (0.25, 1). It could
be interpreted that the paths tend to be more focused and repetitive, both minimal
ones that conform to Automaticity and non-minimal ones that conform to Rigidity. It
is also worth noting that Rigidity drops slightly within the mentioned range, probably
due to Automaticity raising, that overtake also non-minimal repetitions.
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6 Discussion

The cognitive model was able to learn simple rules in the non-random scenarios,
thereby showing that we developed a simple learning model that could be usefully
compared to the behaviour generated by humans. When presented with random sce-
narios, it spontaneously generated redundant and goal-demoted behaviour charac-
teristic of rituralised behaviour, with both redundancy and goal-demotion occurring
more commonly in conditions that also favour that behaviour in humans. Rigidity
proved more elusive. While random scenarios did indeed generate rigidity, they did
not do so in the pattern met with in humans, where rigidity tends to co-vary with
goal-demotion and redundancy. However, this difference in results is to be under-
stood in terms of the limitations of the learning model used rather than as a problem
with the main hypothesis. The reason is that, when tested, humans tend to rigidify
their behaviour in a manner that was not open to the CM tested here. Specifically,
they tend to form series of paths that they then use repeatedly, believing that the rules
determining success change from walk to walk in a set pattern. In effect, they rigidify
not over individual paths but over sets of them. This was not possible for the CM we
created, as it has no memory of paths used as its behaviour is merely determined on
the basis of the move weights.

Keeping in mind this significant limitation, it is possible to conclude that the study
has been successful in showing that ritualisation of behaviour, or at least some aspects
of it, is simply caused by accidental operant conditioning working in a scenario that
is unpredictable—in line with the explanation that Skinner gave for superstition.
As such, superstition and ritual must be seen as having at least in part a common
epistemic basis that means that we should expect such behaviour in any system
capable of learning when it is placed in the relevant set of conditions. This means in
particular, that supernatural beliefs that commonly are connected to rituals are not
basic to them, nor is anxiety necessary to generate ritualised behaviour.

The behaviour of the CM is also interesting in view of error management theory.
When dealing with relatively easy random scenarios in which success was highly
likely, the CM rapidly ended up automatising its behaviour while low success rates
led to much greater innovation. To fully explore this aspect of ritualisation, however,
it would be necessary to make each move costly thereby putting the CM in a position
where it has to decide whether to use a more costly non-minimal path that may in
some scenarios be required to earn points.

In future modelling work we will explore spontaneous ritualisation of behaviour
using more complex cognitive models capable of rigidifying over sets of paths and
then create an agent-based model to explore the social conditions necessary to sustain
a ritual-tradition.
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1 Introduction

Artificial Intelligence has been defined as making “computers do the sorts of things
that minds can do” [8, p. 1]. Boden’s definition evokes questions of whether mind-
like faculties can be replicated and to what extent they may modify individual and
collective behavior. This interplay between the mind’s architecture and behavior
observation requires an interdisciplinary approach to developing intelligent agents.
This paper discusses the concepts of normative, self-organizing, and reflective agents
to propose a framework for capturing the cognitive abilities required to learn, reason,
and reflect on norms, not simply follow or comply. The objective is to showcase that
reflective normative agents operating in dynamic and complex scenarios can foster
the emergence of rich social interactions autonomously, beyond those which do under
the assumption that agents are simply maximizing competence or compliance.
Norms can be defined as “the informal rules we live by” [7], ubiquitous within
society, and argued as powerful constructs for influencing behavior [24], and also
discussed as informal institutional rule types [32, p. 14]. Institutions are systems for
organizing and standardizing behavior; their structured rules regulate social behav-
ior and have long been recognized as essential mechanisms for collective action,
even when individuals do not share a common purpose [31]. Ostrom’s [30] pio-
neering research in shared common-pool resources discussed sustained institutions
and cooperative behaviors through self-organization. Self-organization proposes that
individuals create, employ, and modify their institutions to achieve sustainable coop-
eration [33], mirroring the human potential to change the rules of social interac-
tion [33]. Strides within the social sciences have pushed forward a new constructivist
theory of norms [5]. Bicchieri has identified an ‘Interdisciplinary Frontier’ of norm
research [7], compiling theories and empirical science to discuss the significance
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of norms within society and discern why individuals may choose to follow social
norms. Although this new wave of research provides a map towards the development
of normative agents through its formalizations, critical mind-like qualities integral
for normative agents are yet to be incorporated.

In discussing the issues of incomplete minds, Lewis and Sarkadi [25] call attention
to the failings of many modern Al systems and their inability to reflect upon the
social and ethical nature of their decisions. Reflection is a core mental mechanism
that motivates the evaluation of beliefs, values, and behavior, essential to assess
whether one is congruent with prevailing norms [25] and to reason about the mental
states of others. For sustainable self-organization and self-governance, agents require
the capacity for reflection [38]. However, it is also essential to understand how
norms guide behavior, to formalize how they are represented, learned, activated, and
updated [27]. This paper builds upon Bicchieiri’s formalized constructivist theory
of norms [5], a diverse range of intelligent agent research, and the work of Lewis
and Sarkadi [25] to define a reflective normative agent architecture for simulating
self-organizing behavior.

2 Norms

First, we introduce Bicchieri’s formalization of norms, the conditions to support
them, and the necessary properties for norm compliance.

2.1 Components of Norms

In The Grammar of Society [5, p. 2], Bicchieri presents a ‘constructivist’ theory that
defines norms in terms of expectations and preferences. Expectations and preferences
are the building blocks of many social constructs; as such, they can be considered
integral components for designing and developing artificial social systems. We will
first introduce a personal normative belief, a concept represented through deontic
sentences, and describes what “I believe (I/We) ought to do...” Social expectations
is an umbrella term encompassing two different types of expectations. The first,
empirical expectations, is defined as a belief about another’s future behavior based
on past behavior [6, p. 16—17], written in the form “I expect they’re going to...”
The second, normative expectations, can be described as a second-order belief about
another’s personal normative belief, commonly expressed through deontic sentences
such as “I believe that most people think we ought to do...” Anindividual’s experience
informs their expectations, and significant work has looked to explicitly represent
them [13]. Preferences refer to an individual’s disposition to behave in a certain way
within a specific context, indicating how expectations alone may not necessarily
impact behavior. Preferences may be described as socially unconditional, where
others do not influence one’s choice, or as conditional, by dependence upon empirical
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and normative expectations. It is common to see an additional distinction made in
Bicchieri’s work that an individual’s preferences and expectations are bound to a
reference network; those who matter to our decision-making processes.

2.1.1 Descriptive Norms

Using Bicchieri’s building blocks, a descriptive norm is defined as a pattern of behav-
ior that an individual prefers to engage in on the condition that others within their
reference network also engage in it [S]. A descriptive norm describes interdepen-
dent behaviors where preferences are conditional upon empirical expectations alone.
Following this distinction, descriptive norms drive behaviors such as imitation and
coordination, as they are based solely on the behavior of others and not on another’s
normative expectations.

2.1.2 Social Norms

Whereas descriptive norms are composed of empirical expectations and conditional
preferences alone, social norms require the addition of normative expectations. Social
norms are interdependent, socially conditional, rely upon social expectations, and
require that individuals acknowledge the existence of the normative rules and to
which situation they should be applied. Bicchieri [5, p. 11] defines the conditions for
a social norm to exist as follows:

Let R be a behavioral rule for situations of type S, where S can be represented as a mixed-
motive game. We say that R is a social norm in a population P if there exists a sufficiently
large subset P.y C such that, for each individual :

Contingency: i knows that a rule R exists and applies to situations of type S;

Conditional Preference: i prefers to conform to R in situations of type S on the condition
that:

(a) Empirical Expectations: i believes that a sufficiently large subset of P conforms to R in
situations of type S;

and either

(b) Normative Expectations: i believes that a sufficiently large subset of P expects i to
conform to R in situations of type S;

or

(b’) Normative Expectations with Sanctions: i believes that a sufficiently large subset of P

expects i to conform to R in situations of type S, prefers i to conform, and may sanction
behavior.

It is essential to disambiguate the notation of P, which, dependent upon simulation
objectives, may represent a reference network or a larger population. This distinction
is crucial when applying behavioral rules, as one rule may be a social norm in P and
not in P’. Bicchieri outlines the conditions for a social norm to exist by requiring a
sufficiently large subset of conditional followers P.r, a conditional follower, however,
merely recognizes the existence of the norm and is said to become a follower when
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their social expectations are fulfilled. We can then say the norm is followed if a
sufficiently large subset P, of P.; meets the conditions of contingency, conditional
preference, and social expectations: Py € Py € P.

2.1.3 Not Norms

Finally, in light of often ambiguous and misrepresented terms surrounding the dis-
cussion of norms, it is essential to discuss apparently similar concepts. Outlining
Bicchieri’s building blocks reveals the factor distinguishing normative from non-
normative behaviors like customs, habits, shared morals, and religious rules. This
factor is interdependency. It is a common pitfall to erroneously group normative and
non-normative behaviors together. However, it is essential to note that independent
and interdependent behaviors are motivated by entirely different sets of preferences,
with independent actions occurring irrespective of what others do.

2.2 Requirements for Norm Competence

Inspired by Bicchieri’s definition of norms, recent work by Malle et al. [27] discuss
the properties required for an artificial agent with norm competency; here we discuss
their propositions in light of Bicchieri’s formalizations.

2.2.1 Norm Representation

The language utilized in discussing normative expectations connotes the use of deon-
tic logic. It is common to express these statements as what one should or ought to do
or what is obligatory, optional, permissible, or prohibited. Malle et al. [27] propose
that normative rules be represented through three distinct categories: prescription,
prohibition, and permissions. They suggest a graded ordinal scale to provide granu-
lar insight into the demand of the normative rules, which signals the strength of the
expectation. Grading normative rules provides an intuitive mechanism for decision-
making. The scale provides a weight such that an agent can distinguish to what degree
the norms are demanded, i.e., recognizing whether prescriptions are required or sug-
gested. Norms are seldom described as absolutes, their supporting language often
possessing a fuzzy and qualitative nature; thus, graded demand becomes appropriate.

2.2.2 Context Sensitivity

Bicchieri’s contingency condition requires an agent to be aware of a behavioral rule
and to which situations they are applied for their activation. Recognizing a situation
implies that an agent must first be able to perceive its environment and then infer
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what features within the context activate the norm; situational cues. Situational cues
may come from the environment and others within that situation, activating one’s
beliefs, preferences, and any known accompanying norms. The precise mechanism
by which humans perceive contexts and how such contexts trigger the applicable
norms is presently unclear [27]; however, this is expected to be computationally
demanding for non-humans [36].

2.2.3 Prevalence

A requirement for identifying social norms is to recognize their prevalence within
a reference network. Although a definition for social norm followers provides an
understanding of the prevalence of a norm, this knowledge cannot be assumed to be
available to individual agents. Therefore, prevalence can be calculated or estimated
based on what is observed or communicated.

2.2.4 Norm Learning and Updating

Norm learning illustrates the cyclical relationship between external and internal
norms [11], where external events influence one’s internal representation, and in
turn, the internal norm shapes one’s behavior. For example, external information
may come from explicit instructions, such as signs, verbally communicated rules,
or expressing (dis)approval when a norm is either conformed or transgressed. These
communications may infer the rule’s demand, with stronger sanctions and continued
communication of that rule highlighting its significance to the reference network.
Observing others’ behavior and the consequences of their actions provides another
vector from which to learn, but this may be insufficient for learning norms accurately.
For example, observing behaviors does not express the individual’s desire or motiva-
tion; they may be self-interested and act independently of others or be compliant due
to pluralistic ignorance. Observations are also limited in realistic situations where
agents can only access imperfect information from their surroundings. Thus, to avoid
confusing norm-guided behavior and an individual’s goals or desires, one can learn
from the consequences of actions, whether a behavior is reinforced or sanctioned.
However, the enforcement of social norms can vary significantly [5, p. 8] and may
be heavily influenced by the interdependency of the reference network [22]. Norm
learning thereby describes an observational process to update one’s own mental rep-
resentations and beliefs about others.

3 Towards Reflective Normative Agents

The concepts presented thus far facilitate an agent’s ability to acquire, represent,
and adhere to norms. However, these concepts primarily ensure competency or com-
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pliance, leaving no room for an agent to intentionally violate a norm, which may
be advantageous and preferable for achieving an individual’s or society’s goals [10,
12]. Before Bicchieri’s formalizations, Castelfranchi et al. [12] discussed the neces-
sity of intelligent violations and the requirement for cognitive agents that may form
mental representations of beliefs, goals, and intentions, an aspect missing in recent
prior work. Reasoning about these mental representations requires further discus-
sion about different reasoning processes. Bicchieri’s work highlights the tendency to
focus on deliberation, and higher-level reasoning capabilities like reflection appear
absent in the discussion of normative agents.

Open-ended environments entail scenarios where agents may need to learn to coor-
dinate, cooperate, conform, or control one another [3], learning appropriate strategies
and self-organizing through their interactions with the environment and one another.
Moreover, open-ended situations do away with domain constraints and the specifi-
cation of narrow problems that may otherwise constrain norms and emergent group
behavior. Open-ended, complex environments have seen particular success in devel-
oping deep learning agents [29, 35]. Agent-based modeling is a “quintessential tool
for open-ended social theorizing” [14], where outcomes (like norms) are socially
constructed, emerging organically from social interaction. Indeed, norms are emer-
gent phenomena that come in all shapes and sizes, varying tremendously worldwide
due to the complexity of the environment upon which human societies sit. Therefore,
it is necessary to model the conditions that initially allow various norms to arise. We
propose open-ended situations in which there is no single task. Instead, the emer-
gent norms and behaviors are determined by the initialization of the world and its
inhabiting agents.

3.1 Theory of Mind

Social expectations are beliefs about others’ behavior and what others believe. To
reason about these, an agent must possess models of others that appropriately incor-
porate their mental states to reason about the prevalence of norms. The cognitive
science community has extensively investigated the process of forming mental rep-
resentations of the goals, beliefs, and preferences of those who are interacted with [16,
41]. The capability to construct mental models of others, known as the Theory of
Mind (ToM) [41], is a fundamental aspect of human social intelligence [37]. ToM
has multiple orders [19], but social expectations require the second. Zeroth order
ToM states that an individual can reason about their knowledge, beliefs, desires, and
perceived state of the world but maintain no understanding of the mental state of
others [19]. First-order ToM involves recognizing that one and others have desires
and beliefs that influence behavior. Second-order ToM recognizes that others may
hold beliefs about oneself; essential for normative expectations. The ability to infer
the intentions and form beliefs about other agents from observable actions has sig-
nificant practical applications, particularly for normative agents in cooperative and
competitive tasks [28].
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Modeling others also provides additional qualities that describe how social norms
are adhered to. Social-image and Self-image are aspects that are congruent with the
ToM. These mechanisms facilitate functionalities that help to describe adherence to
a social norm in private and public settings [7, 18]. A social image concern refers to
an individual’s desire to appear in a particular light to others within their reference
network and to seek their approval [39]. A social image enables individuals to be
aware of how they or others are perceived, determining who may be trustworthy,
reliable, and reputable, factors influencing human decision-making [2]. Self-image
is discussed as a mechanism to explain why individuals may continue to exhibit nor-
mative behaviors in a private setting. Rather than exhibiting idealistic characteristics
and behaviors for the benefit of others, individuals choose to adhere to norms to
reinforce a positive self-image; to feel good about themselves. Individuals’ self and
social image concerns infer self-awareness about their behavior and how others per-
ceive them within their reference network. Without explicit coordination protocols,
modeling other agents becomes an essential skill for effective collaboration [2] and
enables the achievement of common goals with decreased effort [37].

3.2 Diverse Reasoning Capabilities

The social phenomena and properties of norms discussed thus far imply the require-
ment for a cognitive agent, a type of agent that can emulate the human capacity for
memory and problem-solving. This distinction connotes a stronger notion of auton-
omy for agents [42], those characterized by mentalistic concepts, able to manipulate
and reason upon mental presentations like goals, beliefs, and context. This contrasts
the implementation suggested by Malle et al. [27], who define a norm conflict reso-
lution property to obey as many norms as possible. Instead, a cognitive agent would
reason about their mental representations to decide whether they should conform
or transgress. Cognitive agents, themselves, can be divided into two overarching
approaches [25], explicit architectures and emerging cognition from complex sys-
tems. The Belief-Desire-Intention architecture is a popular example of explicitly
defined cognitive agents [34], which has several extensions to overcome limiting
assumptions; a comprehensive review of these architectures and agent decision-
making is available in [4]. Systems built using Artificial Neural Networks have also
been successful in developing cognitive agents [40]; similar to humans, it is expected
that cognition may emerge through model complexity. However, there are concerns
that deep learning approaches may develop shortcuts that impede accurate mental
representations in ToM research [3].

The standard view for information processing and decision-making is the delib-
erative route to behavior, a conscious process that weighs each factor against an
individual’s preferences to determine an outcome. There has been much work in
this regard explicitly for normative agents [12, 26], where deliberation is used to
consciously reason and decide whether to conform or transgress rather than norm
following through some hard-coded filter or goal of maximization. In humans, this
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process is costly, requiring time, skill, and effort to systematically weigh all fac-
tors and calculate the potential utility of available strategies. As such, the delibera-
tive route to behavior has received criticism for being an over-cited but underused
decision-making method [5, p. 4-7]. The over-simplistic view that individuals weigh
all their decisions and outcomes is unjustified when considering how some decisions
are made instinctively through some reactive or unconscious process. This mode
of thinking is dubbed the heuristic route. This information processing method calls
upon an in-memory set of rules to prescribe actions based on perceived contextual
information, beliefs, desires, and expectations. The heuristic method is strengthened
by cognitive shortcuts, where overlapping contextual cues and classes of similar sit-
uations allow individuals to generalize or extrapolate one behavioral rule to a new
situation. These two modes of information processing are well discussed within the
literature, often described as thinking fast and slow [23]; both are thought to be
simultaneously occurring in some form or another.

Despite both processes being intuitive for information processing and decision-
making procedures, Bicchieri argues that they are incompatible given that the former
considers preferences as mental states and the heuristic approach does not [5, p. 6].
Between these two modes lies the dispositional approach, a philosophical tradi-
tion that considers beliefs and desires in appropriate circumstances. A dispositional
decision-making process infers that individuals will be motivated to act according
to their preferences until they are dissatisfied by the outcome of their actions or oth-
ers, sparking a reflective process. A reflective process is essential for dealing with
ambiguity, emergent knowledge, and social context [25]. The dispositional process
with reflection reveals how a default behavior (heuristic) may be followed until an
individual feels unfulfilled based on their expectations, invoking a conscious and
reflective process to adjust rules, beliefs, and goals.

3.3 Reflection

Beyond the requirements for a normative agent, we posit the necessity for a reflec-
tive capability within normative agents. Reflection is a higher-level reasoning pro-
cess than previously discussed, enabling individuals to deliberate on abstract con-
cepts like beliefs, behaviors, and norms concerning actions taken and their out-
comes. A reflective agent reasons about their behavior [9], the behavior of others,
and the external world. A reflective process is essential for determining whether
one’s actions were congruent with prevailing norms [25], for dealing with ambigu-
ity, emergent knowledge, and reasoning about social contexts. Lewis and Sarkadi
introduce a novel socio-cognitive theory of reflection in artificial intelligence [25],
which outlines different tiers of reflective capabilities and the corresponding qual-
ities necessary to attain each tier. Expanding on Hesslow’s Simulation Theory of
Cognition [20, 21], Lewis and Sarkadi explore the role of simulation and hypothe-
sis testing as reflective processes, which follows seminal cognitive science research
that discusses an individuals ability to simulate the behavior of others by adopting
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their perspective [15, 17], enabling them to comprehend the intentions or motives
of others and respond appropriately in social contexts. In discussing Ostrom’s
work and the Tragedy of the Commons, Powers et al. [33] call attention to the
capability of reflective processes within humans, highlighting how this mechanism
enables individuals to “change the rules of the game” and avoid undesirable out-
comes; recent work highlights the success reflective self-governance for sustainabil-
ity [1]. Reflection is a crucial cognitive component for normative agents, essential
for reasoning about social expectations, normative rules, models of self, others, the
environment, and society, correcting wrong beliefs, and motivating new goals and
behaviors.

4 Agent Specification

Situated agents can possess the fundamental capacities of perception, locomotion,
and interaction. Normative agents extend this ability to observe the environment and
the actions of those within it, form beliefs about the behavior of others, recognize
the existence of normative rules and to which context they are applied, hold a model
for reference networks, and evaluate their adherence to a norm based on achiev-
ing their own goals, for example, maintaining satiation. Furthermore, normative
agents require the capacity to communicate (directly or through signals) and inter-
pret information from the environment and one another [37]. The open-ended and
undefined configurable environments an agent may inhabit make defining an agent’s
full requirements challenging, with conditional agent requirements dependent on the
situation. However, we can consider the agent’s and environment’s basic proper-
ties to motivate emergent behaviors like cooperation, coordination, conformity, and
control. Beyond capabilities associated with norms and being situated, a reflective
normative agent can reflect upon its mental representations and update or formulate
new normative rules, beliefs, and goals. Reflection can be considered an intentional
action triggered during a shock following a negative outcome when facing ambiguity
in a dispositional reasoning process or an action taken during times of comfort. Given
these conditions, we define a normative system as follows. Let M = (G, E) be a
formal model where E is the environment, and G is the global population of agents.
We can then define the composition of an individual agenti € G as:

(Si’ Bi9 Di7 Xl)

S; is the set of i’s observations of their own and other’s behavior and state;
B; is the set of i’s beliefs;

D; is the set of i’s goals or desires;

X is the set of actions known to i (capabilities);
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This notation provides an intuitive and generalizable abstraction for normative
agents, withi’s knowledge, beliefs, goals, and abilities different from those of another
agent j. This formalization maintains a level of abstraction for X; and D;, which
will remain undefined for open-ended scenarios and open to relevant instantiation
for a given situation. It can then be stated that an individual’s observations denoted
as S; would inform their beliefs B;. Given the requirements outlined prior, agent i’s
beliefs can be stated as follows:

B, = (G, P, R;, O;, E;, N;, Q;, Aj, W))

P; is the set of reference networks known to i, the groups to whom their decisions
matter;

R; is the set of behavioral rules known by i and to which P they belong;

O; is the set of models of agents known to i;

E; is the set of empirical expectations i has regarding S;, R;, and P;;

N; is the set of normative expectations i has regarding S;, R;, and P;;

Q; is the set of personal normative beliefs i has regarding S;, R;, and P;;

A; is i’s model of self;

— W; is i’s model of the world;

Congruent with Bicchieri’s formal model of social norms, an agent’s belief model
incorporates the aforementioned building blocks for the many social constructs to
exist. Beyond these requirements, an agent contains a model of itself A;, the world
W;, and others O; to facilitate the cognitive requirements and mechanisms attributed
to why individuals may choose to conform or transgress. An agent’s model of self
may contain characteristics such as risk sensitivity, self-efficacy, or their tendency
to seek approval, as well as their self-image and social image. An agent’s world
model reflects their incomplete knowledge of the state of the world through their
perception. Our requirements for a normative agent imply the need to model others,
necessitating predictions about another’s intentions or goals [5, p. 56]. As such, a
model of others, O;, is the final layer to unpack. Where i’s beliefs about another
agent j is stated as:

- Pij is i’s beliefs of j’s membership to reference networks, the groups to whom i
believes impacts j’s decisions;
— Dj is i’s beliefs of j’s goals or desires;

X lJ is i’s beliefs of actions known to j’s (capabilities);

Oio‘f is i’s beliefs about j’s model of others;

Rij is the set of behavioral rules i believes j to know;
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- Q{ is i’s beliefs of j’s personal normative beliefs;
— A] isi’s beliefs of how j perceives i;

This specification does not explicitly capture the processes for learning, updating,
and reflection; these will be explored in future work via operationalization.

5 Conclusion

Our exploration into various aspects of reflective normative agents has shed light
on the complexity and importance of understanding human behavior and decision-
making processes. Through extending Bicchieri’s formalizations, we have delved
into the essential components that a normative agent can possess. These include
incorporating mental representations of self, others, environment, and society, con-
sidering multiple modes of reasoning, and the significant role of reflection in shaping
an agent’s actions. Furthermore, we have underscored the importance of creating
dynamic and complex environments that are open-ended, allowing for the emer-
gence of rich self-organizing behavior. To appreciate the complexity of reflective
normative agents, it will be necessary to situate agents in conditions that motivate
social constructionism. This highlights the need for a unified testbed containing suf-
ficiently complex and open-ended scenarios to study agent capabilities. Through
our exploration, we have come to appreciate the multifaceted nature of normative
and cognitive agents, recognizing the complexity of human behavior and the need
for nuanced modeling. By addressing these requirements and leveraging the power
of reflection, we can develop more advanced agents that demonstrate autonomous
decision-making and exhibit the richness of social constructionism.
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The Curse of Possibilities )

Check for
updates

Nicolas Payette

Agent-based models have inputs and outputs:

inputs ABM outputs

Some models are meant to represent the world. In those cases, we would like the
inputs of our model to correspond to some sort of initial condition in the real world
and the outputs to correspond to an outcome that can be measured in both world
and model. In practice, inputs and outputs are often (but not always) sets of numeric
values: a set of parameters 6 for the inputs and a set of summary statistics S for the
outputs.

The values of some parameters might be known to us, whether it’s the hold size
of a particular fishing vessel, the maximum running speed of a grey wolf or the base
interest rate of the Bank of England in May 2023. We can change those values if
we want to explore counterfactual scenarios, but they are still bound by empirical
data or by our assumptions. Other parameters, however, are “free”: we do not have
any direct way of establishing their values. Sometimes that’s because the parameter’s
empirical value is difficult to measure (e.g., the “attraction rate” of a fish-aggregating
device) or because the parameter concerns a more theoretical part of our model, for
which it is difficult to pluck a value directly from the real world (e.g., the learning
rate of a reinforcement-learning agent).

Even if we can’t estimate free parameters directly, all is not lost: we can try using
what we know about outcomes in the real world to work our way back to a set of
parameter values. This task, usually called calibration in the ABM community, can
be tackled in different ways [10], but the general idea is to find a vector of estimated
parameters 6 that minimizes the distance between model output for those parameters
S(é) and observed summary statistics S$* (i.e., the error of the model):
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6 ABM 5(6) 5*

We want to find the 6 that
minimizes this distance.

Calibration is a tricky topic, and the best way to do it varies from model to model
[1], but this simplified picture gives us a way to think about the various mathematical
spaces that we are interacting with during the modelling process. We will develop
these ideas by looking at the Netl.ogo [14] version [12] of the Schelling model
of segregation [8, 9]. Caveat emptor: the original Schelling model is a conceptual
model, not meant to be empirically calibrated.' Itis nevertheless useful as an example
because it is both simple and well known.

NetLogo’s model library contains a Schelling-like model using a movement rule
that’s different from the original.” It is called Segregation and has two parameters,
listed here with their default values:

Parameter Value Description
Density 95 The percentage of grid cells occupied by agents
Jo-Similar-wanted 30 The agents’ desired percentage of neighbours of the

same colour as them

That gives us our initial 6, which in this case is simply a tuple of values: (95, 30).
It’s easy to see how each possible 6 gives us a point in the parameter space of the
model:

100

-~
ot

%-similar-wanted
o

0 25 50
density

100

-3
ut

Parameter space is not the only space we’re dealing with: there is also the state
space of the model. In the case of the Segregation model, each agent has three

! There are plenty of Schelling-inspired empirical models out there. See [15] for a recent example.
2 A detail which is not completely unrelated to the point that we will be trying to make in this paper.
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relevant® variables: xcor, ycor and color. Each of these variables, for each
agent, adds a dimension to the model’s state space.* Running a simulation can be
thought of as following a trajectory through the model’s state space.

Summary statistics (S) are just a pragmatic way of looking at the model’s state
space, making it easier to interpret and relate to the real world (since we probably
don’t have access to the whole state space of our empirical target anyway). In the
Segregation model, the one relevant summary statistic is $-similar. It’s defined
as the sum of the count of similar neighbours for each agent, divided by the sum
of the count of all neighbours for each agent. Imagine that we have an empirical S*
(even though we don’t). Since our parameter space is so small, we can brute force our
way through it and find the 6 that will produce S*. Easy, right? Look at the results:

%-similar

100

Yi-similar-wanted
ot
o

25

0 25 50 75 100
density

Two things should be noticed from the above plot. First, different regions of the
parameter space can produce very similar results. If you’re looking fora$-similar
between 70 and 75, many combinations of $-similar-wanted and density
will give you that, so can’t know what particular combination occurs in the real
world. That’s the problem of parameter identification. If this was a proper empirical
model, we could avoid it by obtaining density from data. But then again, if this
was a proper empirical model, we would have more than two parameters. Parame-
ter identification is a long-acknowledged challenge [4, 7] that we are not going to
confront head-on but that should be kept in the back of the reader’s mind while we
move along.

The other—perhaps even more obvious—thing is that we are missing results
for very low values of density, especially when $-similar-wanted is high.

3 NetLogo defines various other agent variables that complicate things a bit, like heading, 1abel,
or even pen-size, but those can be safely glossed over for now.

4 Things get hairier when a model dynamically creates or remove agents, but let us not think about
that too hard.
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That is a consequence of the way $-similar is defined in the model: it divides
the number of similar neighbours by the total number of neighbours. At low den-
sities, it’s possible for every agent to be completely isolated, in which case there
are no neighbours at all and we end up with a division-by-zero error.’ This explains
why the density slider has a lower bound of 50% in the model’s interface. Not
every region of the parameter space is relevant to a model’s analysis, but we tend to
shy away from pushing against those boundaries because of the complications they
introduce.

Speaking of complications: we have pretended so far, for the sake of simplicity,
that Segregation is a two-parameter model, but is it really? One nice thing about
NetLogo is that it comes with a predefined world ready to be inhabited by your
agents (or “turtles”, in its parlance): a continuous two-dimensional space divided in
“patches”. You can jump right into modelling without getting bogged down in the
details because some choices have already been made for you. The world, by default,
measures 33 x 33 patches and the space is toroidal (i.e., doughnut shaped; you can
wrap around vertical and horizontal edges). In the Segregation model, world size has
been set instead to 51 x 51 and world wrapping kept on. Does it matter? The results
might not be too different on a 33 x 33 grid, or even 100 x 100, but what about
3 x 3, oreven 50 x 1? Topology might matter too: in a non-wrapping world, corner
agents would only have three potential neighbours instead of eight. Trivial details,
maybe—or fun things to try, depending on how you see it—but both world-size and
topology are very much a part of the model’s parameter space even if you choose
not to explore it. We tend to think of model parameters as either numeric (integer or
floating-point values), logical (boolean values) or sometimes enumerated (i.e., one
of a set of possible choices, often implemented as strings), but this is just the tip of
the iceberg.

We mentioned above that NetlLL.ogo’s Segregation model uses its own movement
rule: an unhappy turtle picks a random heading and moves forward until it finds
a free spot (whether or not it’s happy there). Schelling’s original rule is that “an
individual discontent with his own neighborhood moves to the nearest vacant spot
that surrounds him with a neighborhood that meets his demands” [9]. Running the
model with Schelling’s rule gives us results that are similar but not quite the same:®

51 had to modify the Segregation model to output “NA” instead of crashing when running it through
BehaviorSpace. 1 ran 50 iterations per condition and report the mean, excluding runs that resulted
in NA values.

6 This is not the point but I can’t help to notice how moving to the closest spot that satisfies an
agent’s demands (which can very well be a spot with no one else around) is much more likely to
generate NA values than moving the the first free spot in a random direction (which is much more
likely to be right next to someone else).
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This is not surprising. Both movement rules support Schelling original insight
about how relatively low homophily can still lead to high segregation, so maybe it
doesn’t matter all that much. But, again, put yourself in the shoes of an empirical
modeller trying to calibrate their model: which rule should you use? Perhaps you
should try both: make the rule an extra parameter of your model. Congratulations: it
now takes twice as long to explore your model’s parameter space and your identifica-
tion problem just got worse. If both rules can generate S*, which one should you pick?
What about the very large number of other rules that could have been used instead?
And that’s just movement. We haven’t said anything on model initialization,” updat-
ing order, or even how “distance” is defined.® All those things are also parameters.

Note how the distinction between “fixed”” and “free” parameters applies here too.
Suppose you tell me that you don’t need a parameter for a certain agent behaviour
because we know with great confidence how real-world agents behave in such sit-
uations. That’s great, but that’s no different from knowing the population density
because you are modelling a real-world city: it’s still a parameter, it’s just that you
happen to know the value for that particular one.

The point we have been building towards is this: the distinction between parameter
space and program space (or “model space”, “design space”, “specification space”)
is arbitrary. It is a scary thing to contemplate: it means the parameter space of any
model can never be fully explored. We are cursed with effectively infinite possibilities
and in order to achieve anything we are forced to make choices, often based on the
flimsiest of reasons, which carve down model space to a tiny shell of its expansive
self and banishes the rest of it to the realm of the unthinkable.

7 To quote Schelling himself: “It might make sense to distribute the blank spaces evenly, but I let
them be determined at random. (It makes some difference.)” [9, 155].

81 realised after the fact that Schelling uses Manhattan distance whereas T implemented his rule
using Euclidean distance. I do not know if it makes any difference.
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Let’s take a breath and think about the consequences. Nothing has been said in
this paper that is not already known and agent-based modelling is alive and well,
so maybe we just keep on keeping on? That’s not an unreasonable suggestion. The
curse of possibilities is a hump we can get over, and I believe that is something we
see in our personal trajectories as modellers. As a beginner, you are unaware of the
problem. You just want your model to work, and once it does, you’re quite happy
to just explore the parameter space as it is. As you gain experience, you start seeing
all the possibilities, agonizing over every choice. It’s not unlike the old fable of the
fox and the cat: the fox is bragging to the cat about how many cunning escape tricks
he knows, whereas the cat has only one trick which is to climb up a tree. When the
hounds come, the cat immediately gets up to safety but the fox fails to decide which
of his many tricks to use and gets caught. With experience, we learn to go back to
slightly more cat-like behaviour. We develop intuitions about what works and what
doesn’t and we become acutely aware of how limited resources (both human and
computational) are. Deadlines are looming and papers need to get out so we just call
the shot: this is my model, those are its parameters; I'm going to calibrate it and do
my sensitivity analysis and everything will be fine. What else could I possibly do?

If there is one call to action in this essay, it is this: at least be explicit. Do not turn
a blind eye and hope others will too. It’s OK to make arbitrary choices; there is no
way around it, but those choices still matter and need to be documented. Edmund
Chattoe-Brown [2] conducted a review of papers published in JASSS between 1998—
2022 using the terms “random movement” or “move randomly”. He found that the
majority of those papers did not fully explain what that meant and that those that did
all meant different things. Yet, as he shows using NetLogo’s Wolf-Sheep Predation
model [13], and as we have seen with Schelling, movement rules affect results.

So should we stop here, at the acceptance stage of grief, and be content in acknowl-
edging the arbitrariness of our modelling choices? I believe we can do better and that
the way forward is not just to be explicit, but to be formally explicit.

Let’s go back to Schelling and consider movement rules. Once we have decided
that agents should move to a free spot if they are unhappy, we can think of any possible
movement rule as a function: it takes the current state of the model as an input (i.e.,
the position and colour of every agent) and outputs the coordinates at which the
agent wishes to move.” Since possible model states are finite and possible choices
also finite, there is a finite (though massive) number of possible mappings between
them. And that goes for most behaviours in an agent-based model: if we formally
define a behaviour as a function with explicitly typed inputs and outputs, we can get
the computer to generate possible implementations of those functions. This becomes
part of the calibration process: we can automate the exploration of functional space,
just like we automate the exploration of numeric parameter dimensions.

This possibility has recently received attention in the agent-based modelling com-
munity under the “Inverse Generative Social Science” (iGSS) moniker [3]. That

9 NetLogo subtly encourages modellers to change the state of their agents directly—the Segregation
movement rule is a good example of that. It’s arguably a very intuitive way of thinking, but it also
deprives us of the abstraction opportunities that come from modelling behaviours as pure functions.
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methodology has even been applied to the Schelling model itself, in a much more
sophisticated way than what I am discussing here [5]. The idea that we can use a
computer program to generate computer programs is not new. It was first really devel-
oped by John Holland in the 1970s [6] but, like many things in computer science, it
dates back to Turing [11].

So if it’s an old idea and ABM practitioners are already using it, what am [
advocating for? I think that we are on the right track, but there are two things we still
need in order to make more progress. The first and most pressing thing is a proper
conceptual framework. We can talk about collapsing spaces and how it’s all really
just the same, but that only muddies the waters. A proper mathematical treatment of
these questions would set the stage for the second thing which I believe is needed:
better technical tools. At this point you might be recoiling in horror and asking: you
are not really suggesting yet another ABM platform, are you? A fair question. I am
agnostic as to whether a new platform is required, but there are a few features that |
think we are missing.

We need to be able to formally identify the parts of our model that we consider
to be parameters and the parts that we don’t. This might seem counter-intuitive, as I
have just advocated that this delineation is arbitrary, but au contraire: it just makes
it all the more important to be clear about it. These parameters could be defined as
scalar types (i.e., numeric, logical or enumerated) or as functions with their input
and output types. Furthermore, for each of those parameters, it should be explicitly
stated whether they are fixed or free, and in the latter case what their bounds are.
The same care should be taken in defining summary statistics for the model, with the
possibility of stating which ones have a corresponding empirical target and which
ones are just informational. Again, nothing new here: this is all just good practice. It’s
also something that our current tools are not very good at helping us with: it requires
discipline and experience when, ideally, it should happen almost effortlessly.

One way to think about all this is that we should provide metadata about our
model. It would help with documentation, but it would also help with automation.
Once we know all the parameters with their bounds and all the summary statistics
with their targets, we can automate calibration and sensitivity analysis. Once we know
the functional definition of our model’s behaviours, we can automate the generative
search for possible implementations. Extensibility and interoperability should both
play an important role in this brave new world. We cannot presume that current
methods for calibration, sensitivity analysis and, especially, function generation are
the be all and end all and could all be packaged in a static library. New plugins should
be easy to write and external libraries (especially those written in Julia, Python and
R) easy to leverage.

With such a tool in hand, maybe we could be a bit more like the fox again.'® We
could afford to embrace a much wider space of possibilities without getting paralysed
by it. We could focus on the things we really know how to model (there will always

10 seriously considered From cat to fox to cat, then back to fox again as an alternate title for this
essay.
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be at least a few) and let the machine deal with the things we don’t, in a more efficient
way that we ever could. It would not solve all our problems, but it would partly lift
the curse of possibilities.
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Using Survey Data to Develop )
Agent-Based Models of Spatial Spegkter
Segregation

Daniel Schubert

1 Introduction

With the increased immigration of refugees to Germany since 2015, there has been
a strong increase in the proportion of people with a migration background as well as
a strong diversification of immigrants’ references to origin. Immigration and diver-
sification are changing the ethnic composition of the population, especially in cities,
and thus driving processes of ethnic segregation. The phenomenon of segregation is
a well-known topic but in its theoretical foundations very limited. In this short paper,
I will point out a theoretical approach for an agent-based simulation of segregation
pattern and investigate how different levels of tolerance influence the outcome of
the model. To develop the different level of tolerance, data of the German General
Survey (ALLBUS) 2006 will be analysed and implemented in an agent-based model.

2 Theoretical Background

The theoretical foundation of segregation is usually seen in the model of Schelling.
Schelling ([1]: 139) writes that the choice of neighbourhood is a choice of neigh-
bours. This means for people who want a specific social group in their neighbourhood
force to move in these areas because the majority is like a hint for specific character-
istics. An explanation he uses is that other people have seen skin colour as a signal
and the people now reflect the signal. Schelling ([1]: 141) acknowledges that there
are always segregated neighbourhoods, but the characteristics can differ. In the US
usually ethnic segregation is researched by skin colour and that it is difficult to find
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neighbourhoods that are neither 75% populated with people of white or black skin
colour. In a comparison, Schelling writes that it is also difficult to find areas that have
a balance that lasts long enough. Most segregation studies focus on ethnic segrega-
tion but there are other forms of segregation like social or demographic. In this short
paper I will focus on ethnic segregation.

Schelling ([1]: 141) admits that his model does not explain how segregation
occurred. In this context, Schelling assumes that an analysis of the majority situation
can only happen locally and that each group strives for this numerical superiority.
When this is achieved, they try to segregate themselves from the smaller group. To
understand segregation, the researcher needs to analyse the incentives that moti-
vate or sustain behaviour. However, no equilibrium is sought by both groups, since
the disappearance of a minority leads to complete segregation. At the same time,
complete segregation is a stable condition, while in other conditions a shift in the
mix is always possible ([1]: 142). The question that arises is how these mixtures are
influenced by individual decisions. According to Schelling ([1]: 144), some rules are
used to obtain legitimacy for certain behaviours.

Schelling ([1]: 138) acknowledges that he leaves out two processes in his model.
One is the organised actions, whether these are legal/illegal, forced or merely exclu-
sionary, or subtle or blatant. The other is the effect of socio-economic aspects. By
this, Schelling means above all processes that separate the rich from the poor or
the better educated from the less educated ([1]: 139). In our contemporary under-
standing, we would call this process social segregation. He acknowledges that race
correlates closely with income and thus influences residential choice. That means
that the residential segregation is a result of these residential choices and can be
seen as manifestation of social distance. He assumes that even if race is ignored,
segregation occurs.

The question is how segregation arises and what theoretical foundation can be
used for Schelling’s model? This aspect is not explained in any detail in numerous
models; instead, Schelling’s simple description is used as a theoretical foundation
(e.g.[2,3]). Inthe following, I would therefore like to discuss the established-outsider
configuration according to Elias and Scotson [4].

The negotiation of norms is carried out through the process of communicating the
action taken, i.e. the articulated advocacy. However, the exercise of the new norm
leads to a demarcation between the behaviour of the opponents of the new norm and
reality. Thus, a conscious demarcation is focused on. Elias and Scotson [4] refer to
such a figuration as an established-outsider configuration.

Established people, according to Elias and Scotson ([4]: 9), are characterised by
the conviction of a group charism in which all members of the group participate. With
the group charism comes a strong “we” ideal and the belief that one’s self belongs
to a group of people who have a higher value (Elias and Scotson 1993: 9). In this
context, the self-image is shaped by the most positive subgroup of the establishment
group. The counterpart to this is group shame. Group shame is characterised by a
group being ascribed the “worst” characteristics of its “worst” subgroup ([4]: 13).
This results in a social devaluation, of the outsiders ([4]: 9). The stigmatisation
of groups is usually linked to collective ideas about certain groups. Through the
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ideas, the behaviour of the stigmatising group becomes excusable, since it is not the
stigmatising group that has endowed the stigmatised group with the characteristic,
but this characteristic comes from higher powers. Thus, the characteristic is used as a
sign of inferiority or badness. This symbol not only has the function of relieving the
stigmatising group of the burden of guilt, but also of defending the existing balance
of power ([4]: 32p.). Segregation is a mixture of such structures. On the one hand
side person would avoid moving into districts where they are in the position of the
minority and on the other hand side leave the district if the neighbourhood changes.
Segregation thus arises primarily out of the need to distinguish oneself from others
and to maintain a positive group perception. The theories of Elias and Scotson [4]
can be used as a theoretical foundation of the processes described by the segregation
model of Schelling. The problem Schelling [1] mentioned that this model is missing
a theoretical basis can be solved when using this theory. Even if individuals do not
want to separate themselves, the desire for at least 50% of the same social group in
the environment leads to the emergence of segregation patterns.

Inresearch on segregation, ABM is also used regularly. In an international compar-
ison, many studies on segregation have already been conducted (e.g. [5]). Therefore,
only a few selected studies will be discussed here. Hatna and Beneson [3] were
able to use ABM to generate a real-world picture of the distribution of religious
communities in two Israeli cities by using census data from 1995 and taking into
account residential preferences in relation to one’s own religion and a similar pres-
tige of the residential environment. Their models were able to replicate real-world
mixed neighbourhoods. Another example is Liu et al. [6]. Liu et al. [6] considered
actors who could influence neighbours in their ABM and showed that this changed
relocation behaviour. Zuccotti et al. [7] showed that segregation is influenced by
socio-economic status and ethnicity. These selected models show that ABMs can be
used to replicate real-world segregation patterns. At the moment there are no segre-
gation models developed for the German context. Moreover, there is another aspect
that is neglected. Working with real-world data and ABM on segregation is therefore
not a new approach. The key difference is that this model uses data on behaviour and
is not intended to replicate real-world patterns, but to check whether segregation is
occurring and whether a stable model is developing. Building on the theory of Elias
and Schelling, this model will look at how the model changes when real world data
is used for the model. Here, the tolerance values function as an indicator of whether
people accept other group members in their neighbourhood.

3 Hypothesis and Research Question

Agent-based modelling (ABM) are simulation studies that provide a better under-
standing of the course of segregation processes. Through modelling, it is possible
to observe how individual characteristics generate different macro phenomena ([8]:
453). One way to make the spatial segregation model more realistic is to use survey
data. To simplify the model, it is assumed in the simulation study that the agents
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perceive their neighbours and adapt their actions accordingly. What preferences exist
with regard to neighbourhoods and how do these affect segregation patterns? This is
the research question that is the focus of this presentation.

With this theoretical foundation of Schelling [1] and Elias and Scotson [4] the
hypothesis arises that persons reject neighbourhoods in which they are in the minority
position and would avoid them. This a However, this makes the behavioural assump-
tion of the actors more complex. It is therefore no longer only decisive that a certain
number of the same group are in the neighbourhood, but also how many members of
the foreign group there are. This behavioural assumption is more complex and the
question that arises from this is how this more complex assumption affects the segre-
gation process. This assumption of behaviour is supported by the model assumptions
of Schelling and results from the theory of Elias and Scotson (1993). The specific
tolerance values should arise from empirical data. The research question is how these
values effect the model outcome.

4 Methods

To investigate this hypothesis, I proceeded in two steps. In the first step, the data on
the preference over the ethnic composition of the neighbourhood from the ALLBUS
2006 were analysed. There, in accordance with Farley et al. [9], the consent to the
different composition of neighbourhoods was asked. The first step is a descriptive
evaluation of this vignette-like designed questions. In the second step, a model was
programmed in Netlogo [10]. The model replaces this assumption with the more
realistic preference distribution determined empirically from the ALLBUS data.

5 How the Model Works

The basic structure does not differ much from the segregation model of Wilensky [11],
only the specifications made make it significantly more complex than the original
model. These changes will be discussed in the following. First, the model assumes
two distinguishable groups. For convenience, the agents have been coloured blue
and red. This colouring can be perceived by the individual agents. The two groups
are randomly distributed, just as is the case with Schelling. The neighbourhood in
this case is therefore based on pure perception by the agents. The social identity is
based on one’s belonging to a social group. In the following, we will discuss which
settings can be made in the model.

It is possible to vary the density of the agents. The density of the agents can be
varied between 0 and 100% via a controller. Density is understood as the number
of free fields on the model area and where agents can move to. In this way, the
assumptions of Schelling can be used. In addition, there are two controllers for the
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neighbourhood preferences. In the model the share of similar and unsimilar neigh-
bours can be changed through sliders. Therefore, in this text the term sliders is used.
The %-similar-wanted slider specifies how many agents of the same social group are
desired in the neighbourhood. A second slider (%-unsimilar-wanted) specifies how
many different neighbours are desired in the neighbourhood. Both sliders can be set
to a value between 0 and 100.

Slider Noise adds a disturbance term to the model that specifies a random value
and thus makes the model more realistic. In addition, monitors can be used to observe
the concrete number of members in each group, how many agents are happy and how
similar the agent groups are. To begin with, there are the variables of how high the
average value of equal neighbours desired by all agents is and what percentage of all
agents are unhappy.

Table 1 shows the properties of the agents at the beginning.

The values of the belonging to one of the social groups, the tolerance-level, similar-
wanted and unsimilar-wanted are drawn randomly.

Table 1 Properties of the agents at the beginning

Property Value Concept

Happy? True/false | If happy is false the agent moves and look for a
better place nearby

Similar-nearby Numeric | How many neighbouring patches have a household
with my group?

Other-nearby Numeric | How many have a household of another social group?

Total-nearby Numeric | Sum of other and similar variables

Similar-nearby-fraction Numeric | Fraction of neighbours who have the same social
group than me

Attractiveness-now Numeric | To compute and store current attractiveness once
moving is considered

Patch-now To remember current patch before household starts
moving

Similar-nearby-opt Optional new patch: how many similar are nearby

Other-nearby-opt Optional new patch: how many household of another
social group are nearby

Total-nearby-opt Optional new patch: how many household are there
nearby in the potential new spot

Similar-nearby-opt-fract Optional new patch: fraction of similar nearby

Ethnicity Numeric | Belonging to a specific group

My-%-similar-wanted Numeric | The threshold for this particular agent

Tolerance-level-neighbours | Numeric | Influence of tolerance to the neighborhood
composition
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6 Results

In the ALLBUS, people were asked in which residential area they like to live and in
which residential area they would not like to live. Based on the vignettes of Farley
et al. [12], a typical residential area was drawn. This consisted of 49 units with
the respondents unit in the middle and 48 units around it in order to adapt it to
the German context [13—15]. The proportion of foreigners was varied over the 13
vignettes. The gap between the individual vignettes was approximately 8%. This
agreement with the individual vignettes and the proportion of foreigners is shown
in Table 2 [13—15]. The results are shown in the table. A short analysis of the item
can also be found in Friedrichs and Triemer [16]. It can be seen that homogeneous
residential areas are also rejected by a small proportion. It is therefore more realistic
for purely homogeneous neighbourhoods to be rejected and thus for a certain
number of the other social group to live there. It turns out that many people prefer a
proportion of foreigners between 8 and 50%, which are clearly different values than
those assumed by Schelling. It is also evident that a majority of the participants do
not want to live in neighbourhoods where the porpotion of foreigners exceeds 66%.

In the model this implications were implemented by the variables %-similar-
wanted and %-unsimilar-wanted. In order to better adapt the values to reality, they
were randomly selected from the range between 0 and the set limit in the sliders. To
answer the research question of how the different values affect the model, an experi-
ment was created in the Behaviorspace in Netlogo. The different values for “density”,
“%-similar-wanted” and “%-unsimilar-wanted” were varied. The parameter varia-
tions can be found in Table 3. These variations are orientated on the results of the

Table 2 Calculations from the ALLBUS 2006

Want to live in the | Do not want to live in
neighbourhood this neighbourhood

Vignette number | Percentage of foreigners | 2006 2006

1 0 0.81 0.05

2 8.3 0.81 0.02

3 16.6 0.73 0.03

4 25 0.56 0.07

5 333 0.4 0.12

6 41.6 0.29 0.19

7 50 0.19 0.27

8 58.3 0.11 0.36

9 66.6 0.06 0.46

10 75 0.03 0.58

11 83 0.01 0.68

12 91.6 0.01 0.76

13 100 0.01 0.99
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descriptive analysis of the data. The maximum of the slider “%-unsimilar-wanted”
is set at 20% because in the next step under 50% of the people want to live in this
area. The variation of the slider “%-similar-wanted” is oriented on the empirical data,
because if around 75% people want to live in a neighbourhood like in vignette 3 and
only 3% do not want to live there. The density varies between 80 and 95 because
80 is the value Schelling [1] choose and between 90 and 95 because most cities in
Germany have a vacancy rate of 5 to 10%. 100 runs were carried out per parameter
combination with a termination after 500 steps, in total there were 8000 runs of the
model.

First, with the new parameters no longer result in a state of equilibrium in the
model, but the runs have to be aborted. In this experiment is terminated prematurely
after 500 ticks. This means that the addition of a further behavioural assumption alone
ensures that the model no longer reaches an equilibrium state after a few rounds. This
is an interesting observation, as it shows that Schelling’s theoretical foundation alone
is not sufficient. Figure 1 shows the variation of the means of the tolerance of all
agents and the number of the runs. The tolerance values increase plateau-wise, which
is related to the selected population density. This makes it evident that increasing the
lower limit of the people in another group causes the mean values of the tolerance to
rise. The number of free places on the field therefore has an influence on the tolerance
of both groups. The tolerance values rise up to 60%, which means that society seems
to become more tolerant simply because a small amount of mixing is desired by the
people. This is particularly interesting because Schelling’s model assumed that if
people did not want to be in a minority position in their neighbourhood, that alone
would lead to segregation. In this model, it can be seen that the desire for actors from
the other group in the neighbourhood do not lead to segregation. This assumption is
very simple and needs more research.

Figure 2 shows the distribution of the mean of tolerance depending on the steps
and variation of the parameters and the corresponding confidence intervals. The
confidence intervals are overlapping, which means that there is no clear difference
between the experiments is possible. The mean is differentiating between the exper-
iments and is lower with a density of 95 than with a density of 80. This means that
the mean values for tolerance are lower with a greater density, which would mean
that the more agents are in a field, the less tolerance appears to spread. This would
mean that only agents in very dense settlements appear to be more tolerant and that
the own-group preference is actually strengthened as a result. Another interesting

Table 3 Variation of the parameters in the experiment

Concept Name of the parameter | Values
Random effect Noise 0.03

Density Density 80, 85, 90, 95
Surrounded by agents of the same social group | %-similar-wanted 50, 60, 70, 80
Surrounded by agents of the other social group | %-unsimilar-wanted 0,5, 10, 15, 20
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Fig. 1 Mean of the similar wanted depending on the number of runs, separated plots by density

observation is that the mean value is slightly higher at a density of 85 than at a density
of 90. These effects should be considered and examined in further analyses.

Figure 3 shows the average of percent of an agent neighbors has the same colour
like the agent. It can be seen that on average across all densities approx. 85% of
the neighbours have the same colours as the agents. However, this also suggests that
segregation is not stable, as the model must be provided with a stop condition. It is
striking that the similarity is below 90%. Further analyses should examine whether
this effect becomes larger or smaller with more exact values. Above all, the effect
suggests that the addition of values indicating that other social groups should also
be represented actually makes the neighbourhood more diverse.

7 Summary and Limitations

In this short paper, the theoretical basis for segregation has been presented first. For
this purpose, the theories of Schelling [1] and Elias and Scotson [4] were linked. This
provided a theoretical foundation for the agents’ chains reaction. Subsequently, the
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Fig. 2 Distribution of mean of tolerance depending on the steps and variation of the parameters
and corresponding confidence interval

model developed was presented in Netlogo and its mode of operation was described.
The rules followed the theoretical foundation were translated in mathematical terms
and implemented in the model. With the ALLBUS results, individual preferences
about ethnic composition can be fed into the segregation model in a more complex but
also empirically more realistic way. In this paper, an agent-based model is presented
that works with the empirical preferences from the ALLBUS. The distributions are
rudimental implemented in the model. It turned out that the different preferences
ensured that the agents became more tolerant overall and accepted more agents of
the other group in their environment over time. Looking at the models also shows that
the respective segregated areas in the model do not remain stable as in Schelling’s
model, but move. These mechanisms need to be investigated further. In addition, the
values from the ALLBUS should be implemented more precisely in further models.
At present, only random numbers are implemented as lower limits to implement a
level of uncertainty as well. In later models, the empirical distributions are to be
implemented as well as lower and upper limits. At the moment the individual toler-
ance is set at the beginning and not changing anymore. The individual tolerance can
be shaped as well by the corresponding neighbourhood. This should be implemented
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Fig. 3 Average of percent of an agent neighbors has the same colour like the agent

in further models. It is important to mention that the behavioural rule from Schelling
is implemented in this model, which is critical and should be investigated in future
research, if this rule correctly reflects the real world. In addition, only a simple
descriptive evaluation was carried out, with the extension of the agents’ attributes,
better cause-effect relationships can be established. It would be interesting to inves-
tigate how the models behave when there are four groups of agents with different
distributions. There is still more possibilities to use empirical data for agent-based
models. In the next step more attributes should be added to the agents and as well
attributes should be added to the patches.
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Harko Verhagen(®), Corinna Elsenbroich(®, and Nanda Wijermans

1 Introduction

Agent-based models (ABM) serve amongst others to understand how social or macro
phenomena can result from individual interactions with other agents and an environ-
ment as well as how these macro phenomena feed back to the individual agents. Start-
ing off with implementing simple reactive behaviours in cellular automata (reacting
to what a neighbouring cell does), ABM has increasingly moved towards modelling
more cognitively complex agents [2]. Binary choices become sets of choices, cri-
teria for choice selection have to be found, different levels of social engagement
need to be modelled. It means that the agent behaviours in an ABM become more
realistic (i.e. to be more like real people behave, based on concepts, models, and the-
ories of human behaviour) also means that models become less tractable. Competing
paradigms between KISS (Keep it simple stupid!) [1] and KIDS (Keep it descriptive
stupid!) [7] have been battling it out as has the debate about validating ABM, in
particular about validating the rules going into the model e.g. [27]. The call for real-
ism in agent modelling has been part of the history of the field of social simulation,
at least for the non-technical oriented part of the modelling community, and is pre-
sented in a clear way in EROS (Enhancing the realism of simulation) [ 13]—although
the paper has a bias towards implementing psychological theories, reserving social
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theories to be seen as the resulting macro effects of the micro interactions, cutting
the micro-macro-micro linkages in half.

One of the developments within KIDS is the recognition of decision heterogeneity
between agents as well as for the same agent at different times within the simula-
tion. Inter-agent heterogeneity is already part of simple game theoretic models with
populations of mixed strategies, e.g., Hawks and Doves [16]. In cognitive models,
these differences in behaviour and decision making are often encoded as differ-
ences in an agent’s internal states (e.g., beliefs, norms, utility), as is the implied
target of EROS [13]. For example, Fearlus is a goal driven multi-dimensional utility
architecture to model common pool resource management [5, 19]. The agents decide
what to do based on one of three possible strategies (statisficing, imitation, or innova-
tion) depending on their performance and individual characteristics/preferences. The
ASSOCC model [6] integrates needs, goals, and social norms to model the behaviours
of agents during the COVID-19 pandemic. The different factors are integrated via
modelling each of them as needs and a weighing mechanisms expressing need pref-
erences. The Consumat is a context driven architecture with agents using different
decision mechanisms in different situations [14, 15]. The context dependent decision
making is developed using dimensions of cognitive cost and (un)certainty in a 2 by
2 matrix, connected to psychological theories. The MoHuB framework aggregates a
huge variety of cognitive architectures into a generalised meta-framework to enable
finding, communicating and eventually integrating theories from the social and
behavioural sciences in models, thereby thus reflecting context sensitivity by explic-
itly distinguishing between what an agent/human knows and what becomes accessi-
ble/activate in a given context [21]. Finally, the Model Social Agent is an analytical
framework grounded in cognitive and social science theories and concepts [4]. It con-
sists of a 5 by 6 matrix of the types of knowledge and the cognitive processing capabil-
ities respectively that are needed to allow for different types of social behaviour, the
authors apply this matrix to two theories familiar to and used in ABM, namely Fes-
tinger’s Social Comparison Theory [10] and Turner’s Social Interaction Theory [23],
to illustrate how these theories map onto different knowledge and processing com-
binations in the framework and thus put demands on how to model agents for these.

The Contextual Action Framework for Computational Agents (CAFCA) [9] a
conceptual framework for context sensitive decision making, with a focus on dis-
tinguishing two levels of sociality - taking others into account as acting entities and
being part of a social system that steers ones decision-making, see Fig. 1.

Like MoHuB, CAFCA is a meta-framework but different from MoHuB, CAFCA
does not try to generalise over the internal processes of an agent’s decision making
but rather classifies the contexts in which decisions can occur, or contexts which can
make a difference to decisions. It is starting out with two dimensions that are most
prevalent in agent-based modelling, the social setting of a decision and whether
the situation is habitual, strategic, or normative. CAFCA is first and foremost a
framework for a modeller to think about which decision mechanisms might need to
be incorporated into a model. Only secondly should it be used to inform the internal
dynamics of agent decision making.
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CACFA moves the complexity of agent decision making into the recognition of
the context instead of it being a multi-dimensional architecture of (a subset of) needs,
values, emotions, relationships, and utilities such as the examples described above.
The purpose of CAFCA is for the modeller to think carefully which decision contexts
are needed in a particular simulation model. For example, early game theoretic agent-
based models (social/strategic) were extended by social norms, adding the CAFCA
dimension of social/normative to the model, e.g. [3] In [8] the collective dimension
of team reasoning is added to a standard game theory question of common pool
problems.

CAFCA does not prescribe how these different dimensions are implemented but
opens new ways of thinking about decision making in agent-based models. It thus
widens the social ontology considered in ABM (Sect. 2). It also informs new ways for
data collection for ABM, as can be seen in an example of its application to fisheries
(Sect.3).

2 CAFCA and Social Ontology

Social ontology is the part of philosophy analyzing the nature and properties of
the social world. “What exists” is a contentious part of the social sciences, ranging
from positions in which only individuals exist (individualism) over methodological
positions that explanations in the social sciences need to start from the individual
(methodological individualism) to positions which ascribe existence and causal pow-
ers to extra-individual entities, such as institutions, norms and social groups.l
ABM has often been associated with methodological individualism as a research
paradigm [18]. Whilst of course the individual agent and an ‘““agent-centric world-
view” is a central tenet of ABM, it is not limited to an ontology of individuals [28].

' The debate is also known as the agent-structure debate, for more detail see [12].
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CAFCA contributes to the ontology of agent-based modelling by explicitly drawing
attention to two types of sociality, the dimension of the social, focusing on social inter-
action and the dimension of the collective, focusing on social belonging/inclusion.
CAFCA’s social dimension starts with the individual agent level, where no other
agents (are seen to) exist or influence the decision-making of the agent. Context in
which the presence of other agents in the environment, and their actions and decisions
influence the agent’s decision-making forms the social level. The final category is the
collective level, building on the work in social ontology on collective intentionality
and group mind. Here, agency is at the collective (team, group) level rather than the
individual agent level [11]. Thus, other agents in the same collective are seen as part
of the collective decision-making rather than as individual decision-making agents
with which one interacts. Below we will see how this makes a difference.

3 CAFCA Research Design and the Need for Analysis
of Data

As described in [22], for accurate modelling of the COVID epidemic, fine-grained
data is needed to represent specific local conditions and the social reactions of indi-
viduals. Most COVID models are aiming for adequate estimates of disease spreading
at a macro level but fail to cover the relevant behavioural and social complexity of
societies under pandemic crisis. This limited their usability for meso and micro level
analyses and predictions. Another example of the need for more detailed and fine-
grained data concerns research on common-pool research problems. In most of the
research, individuals are modelled as rational choice type of decision makers, where
the social level is thus limited to CAFCA’s social level while claiming to investigate
collective consequences and behaviour. Moreover, in experimental settings to investi-
gate more detailed interaction processes, the number of participants is small, usually
not known to each other, and communication is not included, effectively excluding
any collective level phenomena. In the following two sections we will look closer at
these two examples.

3.1 Example of CAFCA Data (Un)Availability:
The Coronavirus and the Social Impacts on Great
Britain Dataset

The Office for National Statistics (ONS) in the UK started a large weekly survey
at the end of April 2020 collecting data concerning the COVID epidemic.? People
were asked about their behaviours related to reducing the spread of COVID-19,

2 The ONS Coronavirus and the social impacts on Great Britain Dataset can be found at https:/
shorturl.at/fmoL1.
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including wearing face coverings, social distancing, avoiding physical contact, and
self isolation. People were also asked whether they were worried about COVID.

In Fig. 2 we can see that adherence to behaviours to reduce the spread of COVID-
19 change over time. The red line shows the proportion of the population worried
about COVID-19 which is consistently high, around 75% until the end of 2020,
then dropping to about half the population. Whilst wearing a face covering remains
high, social distancing and the avoidance of physical contact reduce in line with the
reduction of people being worried about COVID.

With CAFCA we can start to interpret this as the behaviours coming from differ-
ent motivations. Face coverings, social distancing, and physical contact are highly
visible behaviours, likely to result in imitation or the establishing of a social norm.
Why then is the adherence to face coverings high and the social interaction ones
reducing rapidly? One interpretation is that wearing a face covering is a relatively
easy behaviour to maintain, leading to consistently high levels through imitation.
In contrast, social distancing and avoiding physical contact can be seen as difficult
behaviours to maintain. Observing decreasing levels of social distancing and avoid-
ance of physical contact can lead to a feedback with more and more people increasing
social contacts. Unfortunately, the survey did not ask participants for their reasons
for maintaining or changing those behaviours.

The survey did however ask about different reasons for self isolation. Figure 3
shows arange of reasons for self isolation. They range from self isolating due to worry
or advise to isolate due to medical treatment (rational choice or team reasoning), over
being told to self isolate (rule or norm following), to reacting to having been in contact
with someone who has tested positive for COVID-19 (social norm or even a moral
value expression).

CAFCA can help understand behaviours and categorise motivations. If questions
about motivations were included in surveys as standard, e.g. questions why people
decided to no longer socially distance or avoid physical contact, we might have a
better understanding on why these behaviours changed so much faster than the use
of face coverings.

3.2 CAFCA and Common-Pool Resource Problems

In a project concerning the study of collective action in common-pool resources
(CPR), see [24], we have used CAFCA in several ways and noticed several challenges
concerning data collection, e.g. [25, 26].

Initially we used CAFCA to take a step back and reflect on what decision-making
modes are used in an agent-based model of a common pool resource dilemma [26].
This first encounter centred around the sociality dimension of CAFCA and resulted
in the wish to extend the agent model to reflect the ‘collective’ CAFCA mode. This
triggered an analysis of the available data on the notion of ‘togetherness’ to elicit
hints of how such a formalised collective mode could manifest itself.
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For what reasons have you been self-isolating in
the past seven days?

[ | have tested positive for the coronavirus (COVID-19)

| have coronavirus (COVID-19) symptoms

| have been notif ed by the NHS app to self-isolate

| have been told to isolate through NHS Test and Trace or directly from a venue | have visited
M | have been in contact with someone who has tested positive for the coronavirus (COVID-19)
B | or someone in my household has been advised to isolate because of medical treatment
[ | am worried about catching the coronavirus (COVID-19)

Other

0 10 20 30 40

Great Britain, 22 September to 3 October 2021

Fig. 3 Reasons for self isolation

This first interaction with CAFCA resulted in meaningful reflections on how our
agents are equipped to act as social versus collective. This in turn also implied we
needed to rethink how decision situations ask for agent heterogeneity in terms of
how decisions are made depending on the context. This consequently also calls for
data on the context in which decisions are made and how agents express their take
on the context. Leading to a focus on the reasoning dimension of CAFCA.

Behaviour experiments are a common approach toward a more generic under-
standing of cooperative and sustainable behaviour in CPRs [17, 20]. These studies
are oriented to group behavioural patterns rather than individual decision-making and
focus on quantitative data. However, qualitative data would be needed to investigate
the details of the decision-making modes at play and the transitions between them
for a CAFCA-esque model to go beyond most CPR simulation models. Indeed, most
modellers turn to different theories from the social and behavioural sciences. How-
ever, most of these theories concern relatively simple decisions with few alternatives,
short evaluation horizons, and tend to be within their own domain silo.

Embedded in a series of studies on resource user decision-making, we connect
to the field research in fishing communities in Thailand and Colombia—integrated
in ongoing studies with other researchers. The aim of the project for to formalise
the influence of perception of change in the resource on the participants’ actions
via internal characteristics and processes, see [24] for a detailed description of the
studies. In these studies, the data gathering consists of:

1. the resource extractions/harvesting done by participants in a common-resource
problem game experiment (rounds of deciding how much fish to catch) in a small
group of 4 local fishers;

2. observational data of the communication between the experiment participants;

questionnaire data with the experiment participants; and

4. interviews with the observers (semi-structured, audio recorded and transcribed).

W
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In addition to the adaptations of the basic approach, we exploratory analysed
existing data and adapted the data collection to study the reasoning dimension. Our
re-analysis from the CAFCA reasoning dimensions demonstrates how difficult it was
to elicit hints to what mode people are in when making decisions [25]. We therefore
included a question about the argumentation style in the observation scheme and in
the end interview with the experiment team members.

The observation protocols and interviews did provide some detailed data. A pre-
liminary analysis of the data shows that the relatively small number of interactions
(the experiments consist of 20 rounds of decision-making on how much fish to catch)
does not offer many opportunities for new social effects that emerge during the exper-
iment. Rather, the pre-existing knowledge of the other participants (part of the same
fishing community) plays a role as well as general socio-cultural norms (e.g., one
should respect the elderly, thus their voice in the decision-making process has extra
weight) [24].

The need for detailed information puts high demands on the observers. As the
experiments were carried out in countries of which the researchers did not speak
the local language(s). Thus, the observers need to be able to express themselves
clearly in English. As we are unaware of all culture-related details while the data
comes to us via our interviews of the observers, the observers need to have enough
distance to their own cultural background to recognize the interesting processes and
utterances from the experiments. To note any transitions between individual, social,
and collective they need to observe what is obvious and therefore invisible to the
insiders .

4 Discussion and Conclusion

Agent-based modelling needs to constantly walk the tightrope between realism and
tractability. We want our models to be simple but no simpler than the problem or
research question demands. We hope CAFCA can help to find the right level of
abstraction for a model by helping to think through which decision dimensions are
relevant in the particular setting. For example the Consumat uses individual and
social habitual and strategic dimensions of decision making to replicate consumer
behaviours. A model of mask wearing might need a population of collective norma-
tive agents, some social and collective habitual ones and some social strategic ones
to replicate the dynamics of adherence to COVID restrictions.

In addition to allowing the modeller to think about the dimensions needed to model
a given target, CAFCA can then also help with the appropriate data collections by
focusing surveys, interviews, and focus groups on why people do things and how
they might change their behaviour depending on contexts. This may include the need
for training of those that help modellers collect the data needed.
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